Spectrum of weighted composition operators. Part II: weighted composition operators on subspaces of Banach lattices
نویسندگان
چکیده
منابع مشابه
On reducibility of weighted composition operators
In this paper, we study two types of the reducing subspaces for the weighted composition operator $W: frightarrow ucdot fcirc varphi$ on $L^2(Sigma)$. A necessary and sufficient condition is given for $W$ to possess the reducing subspaces of the form $L^2(Sigma_B)$ where $Bin Sigma_{sigma(u)}$. Moreover, we pose some necessary and some sufficient conditions under which the subspaces of the form...
متن کاملComposition operators acting on weighted Hilbert spaces of analytic functions
In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and observed that a formula for the essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators are investigated.
متن کاملIsometric weighted composition operators
A composition operator is an operator on a space of functions defined on the same set. Its action is by composition to the right with a fixed selfmap of that set. A composition operator followed by a multiplication operator is called a weighted composition operator. In this paper, we study when weighted composition operators on the Hilbert Hardy space of the open unit disc are isometric. We fin...
متن کاملWeighted composition operators on weighted Bergman spaces and weighted Bloch spaces
In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Positivity
سال: 2012
ISSN: 1385-1292,1572-9281
DOI: 10.1007/s11117-012-0196-2